Муниципальное общеобразовательное учреждение — средняя общеобразовательная школа №3 им. Л.Г. Венедиктовой г. Маркса Саратовской области

Центр образования естественнонаучного и технологического профилей «Точка роста»

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА «Робоквантум»

Направленность программы: техническая Возраст обучающихся: 11-14 лет Срок реализации программы: 1 год

Автор-составитель: педагог дополнительного образования Патракова Светлана Александровна

Маркс 2023 год

I. Комплекс основных характеристик дополнительной общеобразовательной общеразвивающей программы.

1.1.Пояснительная записка

Направленность образовательной программы

Программа имеет техническую направленность, в связи с этим рассматриваются следующие аспекты изучения:

- 1. Технологический. Содержание программы рассматривается как средство формирования образовательного потенциала, позволяющего развивать наиболее передовые на сегодняшний день технологии информационные, интегрирующие в себе науку, технологию, инженерное дело.
- 2. Общеразвивающий. Обучение по данной программе создает благоприятные условия для интеллектуального и духовного воспитания личности ребенка, социокультурного и профессионального самоопределения, развития познавательной активности и творческой самореализации учащихся.
- 3. Социально-психологический. Содержание программы рассматривается как средство формирования навыков эффективной деятельности в проекте, успешной работы в команде, развития стрессоустойчивости, эмпатических способностей, умению распределять приоритеты и пользоваться инструментами планирования, а также креативного и инженерно-технического мышления.

Актуальность программы обусловлена тем, что она составлена с учётом современных потребностей рынка в специалистах в области робототехники. Учитывается и междисциплинарность технологий робототехники. Предусмотрено приобретение навыков создания автоматизированных устройств для различных областей: научные и медицинские технологии, электронное творчество, а так же для повседневных и бытовых нужд.

Данная программа дает возможность детям творчески мыслить, находить самостоятельные индивидуальные решения, а полученные умения и навыки применять в жизни. Развитие творческих способностей помогает также в профессиональной ориентации подростков.

Педагогическая целесообразность программы состоит в том, что современное информационное общество требует постоянного обновления и расширения профессиональных компетенций. Необходимо улавливать самые перспективные тенденции развития мировой конъюнктуры, шагать в ногу со временем. В процессе реализации данной программы формируются и развиваются умения и навыки в области робототехники, новые компетенции, которые необходимы всем для успешности в будущем.

Отличительные особенности.

Особенностью данной программы является использование современных методов и технологий в обучении, а именно кейс-метода и командная проектная деятельность.

Кейс представляет собой описание конкретной реальной ситуации, подготовленное по определенному формату и предназначенное для обучения учащихся анализу разных видов информации, ее обобщению, навыкам формулирования проблемы и выработки возможных вариантов ее решения в соответствии с установленными критериями. Кейсовая технология(метод) обучения — это обучение действием. Суть кейс—метода состоит в том, что усвоение знаний и формирование умений и навыков есть результат активной самостоятельной деятельности учащихся по разрешению противоречий, в результате чего и происходит творческое овладение профессиональными знаниями, навыками, умениями и развитие мыслительных способностей.

Эта техника обучения использует описание реальных экономических, социальных и бизнесситуаций. Кейсы основываются на реальном фактическом материале или же приближены к реальной ситуации. Кейс технология объединяет в себе одновременно и ролевые игры, и метод проектов, и ситуативный анализ.

Занятия строятся с учётом индивидуальных особенностей воспитанников, что позволяет заинтересовать, увлечь каждого ребёнка, раскрыть его творческие способности.

Данная дополнительная общеобразовательная общеразвивающая программа «Робоквантум» разработана согласно Положению о дополнительной общеобразовательной общеразвивающей программе педагога МОУ-СОШ №3 г. Маркса.

Адресат программы. Программа предназначена для детей 11-14 лет. Объединение комплектуется из обучающихся 6-8 классов.

Число обучающихся в группе согласно СанПиН – 12 – 15 человек.

Программа составлена с учетом возрастных особенностей учащихся среднего школьного возраста и рассчитана на работу в технологическом классе образовательного центра «Точка Роста».

Срок освоения программы.

Программа рассчитана на 1 один год. Общее количество часов –34 часа.

Режим занятий.

Занятия проводятся 1 раз в неделю по 1 часу. Время занятий и количество часов нормировано Сан Π иH.

1.2.Цель и задачи программы

Цель: развитие творческого потенциала и критического мышления личности ребёнка, через обучение основам конструирования и программирования.

Задачи:

Обучающие задачи:

- дать представление о значении робототехники в развитии общества и в изменении характера труда человека;
- познакомить с основными понятиями робототехники непосредственно в процессе создания технического продукта;
- выработать навыки применения технических средств в повседневной жизни, при выполнении индивидуальных и коллективных проектов, при дальнейшем освоении будущей профессии;
- способствовать формированию умения достаточно самостоятельно решать технические задачи в процессе конструирования моделей;
- сформировать навыки проектирования робототехнических конструкций, создания программ и их отладки на технических проектах;
- научить проектировать, осуществлять макетное моделирование разного уровня сложности;

Развивающие задачи:

- способствовать развитию творческих способностей учащихся, познавательных интересов, развитию индивидуальности и самореализации;
- развивать навыки инженерного мышления, умения работать как по предложенным инструкциям, так и находить свои собственные пути решения поставленных задач;
- развивать познавательные способности ребенка, память, внимание, пространственное мышление, аккуратность и изобретательность при работе с техническими устройствами, создании электронных устройств и выполнении учебных проектов;

Воспитательные задачи:

- воспитать мотивацию учащихся к изобретательству, созданию собственных программных реализаций и электронных устройств; привить стремление к получению качественного законченного результата в проектной деятельности;
- привить информационную культуру: ответственное отношение к информации с учетом правовых и этических аспектов её распространения, избирательного отношения к полученной информации;

• воспитывать социально-значимые качества личности человека: ответственность, коммуникабельность, добросовестность, взаимопомощь, доброжелательность.

1.3.Планируемые результаты.

Предметные результаты.

- Знает виды подвижных и неподвижных соединений в конструкторе; основные приемы конструирования роботов;
- Знает как передавать программы в RCX;
- Умеет создавать действующие модели роботов на основе конструктора ЛЕГО;
- Умеет демонстрировать технические возможности моделей объектов;
- Умеет разрабатывать и собирать программируемые электронные устройства;
- писать код программы на языках C++, Phyton 3, Processing;

Метапредметные результаты:

- определяет, различает и называет детали конструктора;
- конструирует по условиям, по образцу, по чертежу, по заданной схеме и самостоятельно строит схему;
- использует различные способы поиска, сбора, обработки, анализа, организации, передачи и интерпретации информации в соответствии с коммуникативными и познавательными задачами и технологиями учебного предмета, готовит свое выступление и выступает с мультимедийным сопровождением, соблюдает нормы информационной избирательности, этики и этикета;
- использует знаково-символические средства представления информации для создания графических моделей, изучаемых объектов;
- владеет логическими действиями сравнения, анализа, синтеза, обобщения, классификации по родовидовым признакам, установления аналогий и причинно-следственных связей, построения рассуждений, отнесение к известным понятиям;
- умеет работать по предложенным инструкциям;
- умеет работать над проектом в команде, эффективно распределять обязанности, слушать собеседника и вести диалог, признавать возможность существования различных точек зрения и права каждого иметь свою, излагать свое мнение и аргументировать свою точку зрения и оценку событий;

Личностные результаты:

- владеет начальными навыками адаптации в динамично изменяющемся и развивающемся мире;
- развита мотивация учебной деятельности;
- развито чувство самостоятельности и личной ответственности за свои поступки в информационной деятельности, на основе представлений о нравственных нормах, социальной справедливости и свободе;
- развиты навыки сотрудничества с взрослыми и сверстниками в разных ситуациях, умения не создавать конфликты и находить выходы из спорных ситуаций;

1.4.Содержание программы Учебный план

Базовый модуль

Технические навыки (hard компетенции)

1 02	min recitire mapping (mara nemine)	отщин)			
N C	TT		личество час	Форма контроля	
№	Наименование кейса, темы	Теория	Практика	Всего	

парк	I. <u>Автоматизированная</u> овка с подъемным низмом	2	7	9	
1	Тема 1.1. «LegoEducation »	0,5	1,5	2	Опрос, анкетирование, практическая работа, наблюдение
2	Тема 1.2. «Передвижная подъёмная платформа»	0,5	1	1,5	Опрос, беседа, наблюдение, проверка работоспособности конструкции
3	Тема 1.3.«Машинас электродвигателем»	0,5	1,5	2	Опрос, беседа, практическая работа, наблюдение, проверка работоспособности конструкции
4	Тема 1.4. «Подъёмный пневмо-кран».	0,5	1,5	2	Практическая работа, наблюдение, проверка работоспособности конструкции
5	Тема 1.5. Подготовка к публичной демонстрации и защите результатов кейса.		0,5	0,5	Беседа, наблюдение, индивидуальные консультации
6	Защита проектов.		0,5	0,5	Представление продукта на разных уровнях, защита проекта
7	Рефлексия		0,5	0,5	Беседа
	2. <u>Инспектирование</u> жного покрытия	2	10	12	
8	Тема 2.1. Постановка проблемной ситуации и поиск путей решения. Ознакомление с робототехническим конструктором LEGO Mindstorms EV3. Изучение видов и названий деталей.	0,5	0,5	1	Опрос, беседа, наблюдение
9	Тема 2.2. Виды механических и электронных компонентов, применяемых в робототехнике.		0,5	0,5	Опрос, беседа

22	Тема 3.1. Постановка проблемной ситуации и поиск путей решения. Составление плана решения задачи.		1,5	1,5	Наблюдение, индивидуальные беседы, самостоятельная работа
Кейс 3. Автоматический заварщик чая			14	14	И. С
21	Рефлексия.		0,5	0,5	Беседа
20	Защита проекта.		0,5	0,5	Представление продукта на разных уровнях
19	Тема 2.12. Дискуссия о проблемах, возникших во время работы.		0,5	0,5	Беседа
18	Тема 2.11. Создаем краткую презентацию о собственном проекте.		0,5	0,5	Индивидуальные консультации, представление продукта на разных уровнях
17	Тема 2.10. Перенос программы на робота и исправление недочетов.		0,5	0,5	Практическая работа, наблюдение, проверка работоспособности конструкции
16	Тема 2.9. Собираем конструкцию робота.		0,5	0,5	Самостоятельная работа
15	Тема 2.8. Апробирование программы на оборудовании.		2	2	Тестирование, индивидуальные консультации
14	Тема 2.7. Создаем программу для будущего проекта		1	1	Самостоятельная работа
13	Тема 2.6. Изучение возможности среды программирования.	0,5	0,5	1	Наблюдение, практическая работа
12	Тема 2.5. Осваиваем интерфейс программы	0,5	0,5	1	Беседа, опрос, практическая работа
11	Тема 2.4. Работа с моторами, изменение скорости и добавление задержки. Изучение подключенных датчиков и считывание информации с них»		2	2	Практическая работа, самостоятельная работа
10	Тема 2.3. Работаем с блоком без подключения к компьютеру.	0,5	0,5	1	Практическая работа, самостоятельная работа

23	Тема 3.2. Сборка платформы для установки моторов.	1,5	1,5	Беседа, наблюдение, практическая работа, проверка работоспособности конструкции
24	Тема 3.3. Установка датчиков на имеющуюся платформу	1,5	1,5	Беседа, наблюдение, практическая работа, проверка работоспособности конструкции
25	Тема 3.4. Изготовление платформы, нахождение уязвимости	1	1	Самостоятельная работа, наблюдение, проверка работоспособности конструкции
26	Тема 3.5. Подключение датчика цвета к блоку управления и программирование его на определение цвета	0,5	0,5	Практическая работа, проверка работоспособности конструкции
27	Тема 3.6. Программирование блока с подключенным датчиком цвета в режиме «Яркость отраженного света».	0,5	0,5	Практическая работа, наблюдение, демонстрацией полученных навыков
28	Тема 3.7. Функции для датчика цвета при различных условиях.	0,5	0,5	Наблюдение, практическая работа, демонстрацией полученных навыков
29	Тема 3.8. Составление программы для робота — заварщика чая.	0,5	0,5	Практическая работа, проверка работоспособности получившейся программы
30	Тема 3.9. Работа над возможными ошибками и недочётами в готовой программе.	0,5	0,5	Самостоятельная работа, индивидуальные консультации
31	Тема 3.10. Сборка робота – заварщика чая.	0,5	0,5	Самостоятельная работа, индивидуальные консультации
32	Тема 3.11. Окончательная сборка робота. Испытание робота в соответствии с программой.	0,5	0,5	Наблюдение, практическая работа, тестирование работоспособности конструкции
33	Тема 3.12. Готовим презентацию для выступления перед группой.	0,5	0,5	Индивидуальные беседы, консультации

34	Тема3.13. Защита проектов. Рефлексия.		3	3	Представление продукта на разных уровнях
	Итого	4	30	34	

Содержание учебного плана

Базовый модуль.

Технические навыки (hard компетенции).

Кейс № 1 « Автоматизированная парковка с подъемным механизмом».

Данный кейс предназначен для демонстрации возможности использования материалов и деталей из робототехнических наборов для создания модели или прототипа полноценного действующего проекта. Так же демонстрируются принципы работы пневматических элементов и варианты их использования в современном мире.

В результате учащиеся, работая в команде, должны будут создать свою модель многоуровневой парковки с автоматическим подъёмником.

Учащиеся должны знать:

• Правила работы с конструктором LegoEducation и с электронными и пневматическими компонентами.

Учащиеся должны уметь:

- генерировать идеи;
- слушать и слышать собеседника;
- аргументированно отстаивать свою точку зрения;
- искать информацию в свободных источниках и структурировать ее;
- работать в команде;
- работать с программами по созданию презентаций (MS PowerPoint или prezi.com);
- объективно оценивать результаты своей работы.

Формы занятий, используемые при изучении данного кейса:

- лекшионная.
- групповая (командная) работа,
- групповые консультации;
- защита проектов.

Тема 1.1. Вводное занятие. Конструктор «LegoEducation» и его детали.

Теория. Введение. Знакомство с учащимися. Техника безопасности. Организация рабочего места. Знакомство с конструктором LegoEducation. Классификация деталей, способы соединения. Основные задачи при конструировании. Основы моделирования и конструирования робототехнических систем из отдельных компонентов конструктора LegoEducation.

Практика: Конструирование модели по инструкции и указаниям преподавателя.

Форма подведения итогов: Проверка работоспособности конструкции.

Тема 1.2. Передвижная подъёмная платформа.

Теория. Понимание основ работы механизмов, использующихся в повседневной жизни.

Практика: Конструирование модели, способной приводиться в движение механическим усилием.

Форма подведения итогов: Проверка работоспособности конструкции.

Тема 1.3. Машина с электродвигателем.

Теория. Основные сведения о работе с электронными компонентами конструктора LegoEducation. Понимание физических основ электродинамики в электроавтомобилях и солнечных зарядных станциях.

Практика: Конструирование модели автомобиля с электродвигателем и аккумулятором. Создание системы подзарядки электро-автомобиля от солнечной энергии.

Форма подведения итогов: Проверка работоспособности конструкции.

Тема 1.4. Подъёмный пневмокран.

Теория. Знание основ о пневматических компонентах, применяемых в роботостроении.

Умение проводить полноценные испытания и анализировать результаты.

Практика. Конструирование модели подъёмного крана на пневматической тяге (сжатом воздухе). Конструирование модели многоуровневой парковки, шлагбаума, подъемной платформы.

Форма подведения итогов: Проверка работоспособности конструкции.

Тема 1.5. Подготовка к публичной демонстрации и защите результатов кейса.

Теория. Умение анализировать созданный проект и выделять в нём подходящие к публичной защите моменты.

Практика. Навыки создания презентации и резюмирования итогов.

Форма подведения итогов: защита проектов.

Кейс № 2 « Инспектирование дорожного покрытия».

Данный кейс направлен на получение первичных навыков сборки робота, программирования, работы с механизмами и сенсорами, а также развитие творческих способностей. В результате учащиеся в команде должны спроектировать и создать собственного робота.

Учащиеся должны знать:

- принципы работы с ПК;
- робототехническим набором LEGO Mindstorms EV3 и средой программирования LEGO;
- основы ораторского искусства;
- технику безопасности при работе с электронными компонентами и компьютерами.

Учащиеся должны уметь:

- осуществлять поиск ошибок программного кода, производить отладку составленных программ;
- осуществлять сборку робототехнических конструкций;
- работать с программами по созданию презентаций (MS PowerPoint, prezi.com);
- слушать и слышать собеседника;
- аргументированно отстаивать свою точку зрения;
- искать, отбирать и систематизировать информацию;
- точно формулировать требования к выполнению работы;
- работать в команде;
- мыслить творчески, придумывать и воплощать в жизнь свои идеи;
- объективно оценивать результаты своей работы.

Формы занятий, используемые при изучении данного кейса:

- лекционная;
- групповая (командная) работа;
- групповые консультации;
- защита проектов.

Тема 2.1. Постановка проблемной ситуации и поиск путей решения.

Ознакомление с робототехническим конструктором LEGO Mindstorms EV3.

Теория. Ознакомление с робототехническим конструктором LEGO Mindstorms EV3.Изучение видов и названий деталей.

Практика. Знания о деталях конструктора.

Форма подведения итогов: Проверка усвоенного материала путём личной беседы.

Тема 2.2. Виды механических и электронных компонентов, применяемых в робототехнике.

Теория. Знания об электронных и механических компонентах, применяемых в робототехнике LEGO Mindstorms EV3.

Практика. Знания об электронных и механических компонентах робототехнического набора.

Форма подведения итогов: Проверка усвоенного материала путём личной беседы.

Тема 2.3. Работа с блоком без подключения к компьютеру.

Теория. Изучить блок управления роботом.

Практика. Умения создания программ без использования ПК.

Форма подведения итогов: Проверка усвоенного материала демонстрацией полученных навыков.

Тема 2.4. Работа с моторами, изменение скорости и добавление задержки.

Изучение подключенных датчиков и считывание информацию с них.

Теория. Знания о возможных видах движущих систем и используемых сенсорах в робототехнике.

Практика. Практическое изучение входящих в комплект моторов и датчиков.

Форма подведения итогов: Проверка усвоенного материала демонстрацией полученных навыков.

Тема 2.5. Осваиваем интерфейс программы.

Теория. Знания об используемых в процессе программирования на LME EV3 функций.

Практика. Осваиваем базовые навыки визуального программирования.

Форма подведения итогов: Проверка усвоенного материала путём личной беседы.

Тема 2.6. Изучение возможности среды программирования.

Теория. Понимание принципов взаимодействия блоков между собой при следовании программы по алгоритму.

Практика. Используем всевозможные команды для создания своих программ.

Форма подведения итогов: Проверка усвоенного материала демонстрацией полученных навыков.

Тема 2.7. Создание программы для будущего проекта.

Теория. Изучить методы и алгоритмы, необходимые для проекта

Практические навыки модульного программирования.

Форма подведения итогов: Проверка усвоенного материала демонстрацией полученных навыков.

Тема 2.8. Апробирование программы на оборудовании.

Теория. Навыки использования программы на железе.

Практика. Тестирование созданной программы на роботе с выявлением возможных недоработок и исправлением ошибок по ходу работы.

Форма подведения итогов: Проверка усвоенного материала демонстрацией полученных навыков.

Тема 2.9. Собираем конструкцию робота.

Теория. Умение работать с конструктором и правильно размещать механические и электронные элементы.

Практика. Конструируем робота для решения задачи выявления неровностей поверхности.

Форма подведения итогов: Проверка работоспособности конструкции.

Тема 2.10. Перенос программы на робота и исправление возможных недочетов.

Теория. Навыки программирования готового робота с исправлением ошибок как программных, так и конструкторских.

Практика. Запрограммировать робота и практически показать его способность решить задачу нахождения неровностей поверхности.

Форма подведения итогов: Проверка работоспособности конструкции.

Тема 2.11. Создание краткой презентации о собственном проекте.

Теория. Умение публичного выступления.

Практика. Подготовить и презентовать свой проект среди одногрупников.

Форма подведения итогов: Публичное выступление.

Тема 2.12. Дискуссия о проблемах, возникших во время работы.

Теория. Умение анализировать проведённую работу и выявлять моменты, которые можно было бы улучшить.

Практика. Проанализировать ход мыслей и действий. Выявить общие черты и ошибки в работе.

Форма подведения итогов: Личная беседа.

Кейс № 3 « Автоматический заварщик чая».

Кейс позволяет углубиться в изучение среды программирования роботов LegoMindestormsEducation EV3. Так же при работе над кейсом прорабатываются различные варианты примеров использования датчика цвета и моторов в роботах повседневного назначения.

Учащиеся должны знать:

- принципы работы с ПК;
- робототехническим набором LEGO Mindstorms EV3 и средой программирования LEGO;
- основы ораторского искусства;
- технику безопасности при работе с электронными компонентами и компьютерными устройствами.

Учащиеся должны уметь:

- осуществлять поиск ошибок программного кода;
- производить отладку составленных программ;
- осуществлять сборку робототехнических конструкций;
- работать с программами по созданию презентаций (MS PowerPoint, prezi.com);
- слушать и слышать собеседника;
- аргументированно отстаивать свою точку зрения;
- искать, отбирать и систематизировать информацию;
- точно формулировать требования к выполнению работы;
- работать в команде;
- мыслить творчески, придумывать и воплощать в жизнь свои идеи;
- объективно оценивать результаты своей работы.

Формы занятий, используемые при изучении данного кейса:

- лекционная;
- групповая (командная) работа;
- групповые консультации; защита проектов.

Тема 3.1. Постановка проблемной ситуации и поиск путей решения.

Составление плана решения задачи.

Теория. Учимся искать пути решения, аргументировать свою точку зрения.

Практика. Разобрать проблему на части и составить план проекта.

Форма подведения итогов: Индивидуальная беседа.

Тема 3.2. Сборка платформы для установки моторов.

Теория. Разбираем, как происходит сборка устройства, монтаж и подключение электронных компонентов.

Практика. Сборка устройства, монтаж и подключение электронных компонентов.

Форма подведения итогов: Проверка работоспособности получившейся конструкции.

Тема 3.3. «Установка датчиков на имеющуюся платформу».

Теория. Анализируем имеющиеся сенсорные датчики с целью их применения в устройстве.

Практика. Монтаж и подключение необходимых для проекта датчиков из набора.

Форма подведения итогов: Проверка работоспособности получившейся конструкции.

Тема 3.4. Изготовление платформы, нахождение уязвимости.

Теория. Учимся находить проблемы в механической части и тестировать проект в процессе сборки.

Практика. Собираем платформу для проекта. По ходу сборки выявляем наличие возможных неисправностей и исправляем их.

Форма подведения итогов: Проверка работоспособности получившейся конструкции.

Тема 3.5. Подключение датчика цвета к блоку управления и программирование его на определение цвета.

Теория. Знакомимся с функциями датчика цвета из набора LME и учимся программировать его.

Практика. Монтаж, подключение и программирование датчика цвета для созданной ранее конструкции.

Форма подведения итогов: Проверка работоспособности получившейся конструкции.

Тема 3.6. Программирование блока с подключенным датчиком цвета в режиме «Яркость отраженного света».

Теория. Знакомимся с дополнительным режимом датчика цвета из набора LME и учимся программировать его.

Практика. Отрабатываем навыки работы с светочувствительными сенсорами на примере датчика цвета.

Форма подведения итогов: Проверка усвоенного материала демонстрацией полученных навыков.

Тема 3.7. Функции для датчика цвета при различных условиях.

Теория. Анализируем различные ситуации, в которых датчик цвета может оказаться полезным.

Практика. Применяем датчик цвета в разных условиях и режимах для нахождения наиболее подходящих к проекту.

Форма подведения итогов: Проверка усвоенного материала демонстрацией полученных навыков.

Тема 3.8. Составление программы для робота – заварщика чая.

Теория. Исходя из усвоенного ранее, составляем алгоритм работы робота – заварщика.

Практика. Реализуем составленный алгоритм в полноценную программу для робота

Форма подведения итогов: Проверка работоспособности получившейся программы.

Тема 3.9. Работа над возможными ошибками и недочётами в готовой программе.

Теория. Проверка точности исполнения программы на роботе, относительно задуманного алгоритма.

Практика. Внесение изменений в программу для исправления возможных отклонений от задуманного алгоритма.

Форма подведения итогов: Проверка работоспособности получившейся конструкции.

Тема 3.10. Сборка робота – заварщика чая.

Теория. Самостоятельная работа по проектированию и доработке проекта.

Практика. Монтаж, подключение, установка и доработка всех модулей на проекте.

Форма подведения итогов: Проверка работоспособности получившейся конструкции.

Тема 3.11. Окончательная сборка робота. Испытание робота, в соответствии с программой.

Теория. Тренируем способность к объединению программной и конструкторской частей робота.

Практика. Проведение последних тестов и испытаний проекта на работоспособность.

Внесение незначительных изменений при необходимости.

Форма подведения итогов: Проверка работоспособности получившегося проекта.

Тема 3.12. Готовим презентацию для выступления перед группой.

Теория. Даём теорию о правильном преподнесении информации о проекте через презентацию и выступление. Тренируем навыки обобщения и структурирования информации.

Практика. Подготовить презентацию по полученным результатам.

Форма подведения итогов: Индивидуальная беседа.

1.5. Формы аттестации и их периодичность.

Для полноценной реализации данной программы используются разные виды контроля:

- текущий контроль осуществляется посредством наблюдения за деятельностью ребенка в процессе занятий;
- промежуточный контроль диагностика знаний, открытое занятие;
- итоговый контроль диагностика умений, участие в выставках, конкурсах, культурно массовых мероприятиях.

II. Комплекс организационно-педагогических условий 2.1. Методическое обеспечение.

- набор нормативно-правовых документов;
- наличие утвержденной программы;
- календарно-тематический план;
- необходимая методическая литература;
- учебный и дидактический материал;
- методические разработки;
- раздаточный материал;
- наглядные пособия и т.д.

Используемые педагогические технологии и методы обучения и воспитания.

Педагогические технологии, используемые в представлении программного материала:

- *технологии дифференцированного обучения* для освоения учебного материала обучающимися, различающимися по уровню обучаемости, повышения познавательного интереса.
- *технология проблемного обучения* с целью развития творческих способностей обучающихся, их интеллектуального потенциала, познавательных возможностей;
- здоровьесберегающие технологии с целью сохранения здоровья обучающихся при работе за компьютером,
- проектные технологии, с помощью которых подростки выполняют проекты в виде презентаций на выбранные темы.

Методы и приемы обучения: словесный, метод проектов, демонстрация, беседы, практические работы, кейс метод.

Формы организации занятий: фронтальные, индивидуальные, групповые.

2.2.Условия реализации программы.

При реализации данной программы предусмотрено использование цифрового оборудования.

Материально технические условия реализации программы:

- ноутбук мобильного класса;
- проектор, для создания и просмотра презентаций и видеофрагментов;
- конструктор LEGO® EducationWeDo 2.0, применимый для изучения основ технологи и программирования.
 - конструктор LEGO Mindstorms EV3.

Информационные условия реализации программы:

- операционная система Windows7;
- программа PowerPoint;
- пакет офисных программ MS Office,

- программное обеспечение для компьютеров и планшетов для Базового набора LEGOEducationWeDo 2.0
- программное обеспечение для написания программ на контроллер из набора LegoMindstorms EV3.

Дидактические материалы:

- Комплект учебных проектов WeDo 2.0 для Базового набора LEGO® EducationWeDo 2.0с заданиями по технологии и другим областям;
- https://education.lego.com/ru-ru/product/machinesand-mechanisms-middle-school Официальная страница с информацией о конструкторе LegoEducation.
- https://education.lego.com/ru-ru/middle-school/intro Дополнительная информация по набору LegoEducation: Машины и механизмы.
- https://www.lego.com/ru-ru/mindstorms/about-ev3 Официальная страница с информацией о наборе LegoMindstorms EV3
- https://education.lego.com/ru-ru/downloads/ mindstorms-ev3/ software Программное обеспечение для создания программ на контроллере из набора LegoMindstorms EV3

Кадровое обеспечение: Реализацию программы осуществляет педагог, прошедший подготовку по образовательным программам среднего или высшего образования по специальности и направлению подготовки, соответствующим направленности дополнительных общеобразовательных общеразвивающих программ.

2.3.Оценочный материал.

Мониторинг усвоения программы обучающимися.

/Мониторинговая таблица/.

Ф.И. учащегося	Проект «Подъёмный пневмо-кран»	Проект «Я создаю робота»	Проект «Робот –заварщик чая»	Защита проектов

Нормы оценок устного ответа:

Высокий уровень (8-10 баллов)

- учащийся: последовательно, чётко, связно, обоснованно и безошибочно излагает учебный материал;
- дает ответ в логической последовательности с использованием принятой терминологии;
- показывает понимание сущности рассматриваемых понятий, явлений и закономерностей, теорий, взаимосвязей; умеет выделять главное;
- самостоятельно анализирует и обобщает теоретический материал;
- рационально использует наглядные пособия, справочные материалы, дополнительную литературу,
- применяет упорядоченную систему условных обозначений при ведении записей, сопровождающих ответ;
- имеет необходимые навыки работы с приборами, чертежами, схемами и графиками, сопутствующими ответу; допускает в ответе недочеты, которые легко исправляет по просьбе педагога.

Повышенный уровень (5-7 баллов)

- учащийся: показывает знание всего изученного учебного материала; дает в основном правильный ответ;
- учебный материал излагает в обоснованной логической последовательности с приведением конкретных примеров, при этом допускает одну негрубую ошибку или не более двух недочетов в использовании терминологии учебного предмета, которые может исправить самостоятельно;

- анализирует и обобщает теоретический материал;
- применяет упорядоченную систему условных обозначений при ведении записей, сопровождающих ответ;

Базовый уровень (меньше 7 баллов)

- учащийся: демонстрирует усвоение основного содержания учебного материала, имеет пробелы, не препятствующие дальнейшему усвоению материала;
- применяет полученные знания при ответе на вопрос, анализе предложенных ситуаций по образцу;
- допускает ошибки в использовании терминологии учебного предмета, показывает недостаточную сформированность отдельных знаний и умений;
- выводы и обобщения аргументирует слабо, допускает в них ошибки, затрудняется при анализе и обобщении учебного материала;
- дает неполные ответы на вопросы педагога, использует неупорядоченную систему условных обозначений при ведении записей, сопровождающих ответ.

Участие

обучающихся по программе дополнительного образования «РОБОКВАНТУМ» в конкурсах и мероприятиях различного уровня за 2023-2024 уч. Год

№п/п	Ф.И. учащегося	класс, возраст	Название конкурса, мероприятия, работы	Уровень	Сроки проведения	Результат

2.4. Литература

Для педагога.

- 1. Макаров И.М., Топчеев Ю.И. Робототехника: История и перспективы. М., 2003.
- 2. Саммерфилд М. Программирование на Python 3. Подробное руководство.3. Лутц М. Изучаем Python, 4-е издание.

Для родителей.

- 1. Ревич Ю. Занимательная электроника.
- 2. Карвинен Т., Карвинен К., Валтокари В. Делаем сенсоры. Проекты сенсорных устройств на базе Arduino и RaspberryPi.

Для детей.

- 1. Саммерфилд М. Программирование на Python 3. Подробное руководство.
- 2. Лутц М. Изучаем Python, 4-е издание.
- 3. Филиппов С.А. Робототехника для детей и родителей. СПб, 2011.

Интернет-ресурсы.

- 1. Дополнительные материалы по набору Airblock [Электронный ресурс] https://makeblock.com/steam-kits/airblock
- 2. Дополнительные материалы по набору UltimateKit 2.0 [Электронный ресурс] https://makeblock.com/steam kits/mbot ultimate
- 3. Официальный сайт Arduino [Электронный ресурс] https://www.arduino.cc/
- 4. Образовательные ресурсы для набора MakeBlock [Электронный ресурс] http://education.makeblock.com/
- 5. Официальная страница с информацией о наборе LegoMindstorms EV3. -[Электронный ресурс] https://www.lego.com/ru-ru/mindstorms/about-ev3

- 6. Программное обеспечение для создания программ на контроллере из набораLegoMindstorms EV3. [Электронный ресурс] https://education.lego.com/ruru/downloads/mindstorms-ev3/software
- 7. Ресурс для самообразования, образовательная платформа и конструктор онлайнкурсов [Электронный ресурс] https://stepik.org/
- 8. Руководствопо LegoMindstorms EV3. [Электронный ресурс] https://robothelp.ru/images/lego-mindstorms-ev3/instructions/ev3_user_guide_education.pdf
- 9. Сайт Амперка, материалы, для Arduino, основы схемотехники и программирования [Электронный ресурс] .http://wiki.amperka.ru/
- 10. Сайт с инструкциями по работе с микроконтроллерами Arduino [Электронныйресурс] https://arduinomaster.ru/
- 11. Сайт с разными уроками, схемами подключения, библиотеками Arduino -[Электронный ресурс] https://all-arduino.r

2.5.Календарный учебный график

№ п/п	Месяц	Число	Время	Форма занятия	Кол-во часов	Тема занятия	Место проведения	Форма контроля
1				лекционная	1	Тема 1.1. «LegoEducation »	МОУ-СОШ №3	Опрос, анкетирование, практическая работа, наблюдение
2				групповая (командная) работа	1	«LegoEducation»	МОУ-СОШ №3	Опрос, анкетирование, практическая работа, наблюдение
3				групповая (командная) работа	1	Тема 1.2. «Передвижная подъёмная платформа»	МОУ-СОШ №3	Опрос, беседа, наблюдение, проверка работоспособност и конструкции
4				групповая (командная) работа	1	«Передвижная подъёмная платформа» Тема 1.3.«Машина с электродвигателем»	МОУ-СОШ №3	Опрос, практическая работа, наблюдение, проверка работоспособност и конструкции
5				групповая (командная) работа	1	«Машина с электродвигателем»	МОУ-СОШ №3	Опрос, практическая работа, наблюдение, проверка работоспособност и конструкции

6		групповая (командная) работа	1	Тема 1.4. «Подъёмный пневмокран».	МОУ-СОШ №3	Практическая работа, наблюдение, проверка работоспособност и конструкции
7		групповая (командная) работа	1	«Подъёмный пневмокран»	MOY-COIII №3	Практическая работа, наблюдение, проверка работоспособност и конструкции
8		групповые консультации	1	Тема 1.5. Подготовка к публичной демонстрации и и защите результатов кейса	MOY-COIII №3	Беседа, наблюдение, индивидуальные консультации
9		защита проектов	1	Защита проектов. Рефлексия	МОУ-СОШ №3	Представление продукта на разных уровнях, защита проекта, беседа
10		лекционная	1	Тема 2.1. Постановка проблемной ситуации и поиск путей решения .Ознакомление с робототехническим конструктором LEGO Mindstorms EV3. Изучение видов и названий деталей.	МОУ-СОШ №3	Опрос, беседа, наблюдение
11		групповая (командная) работа	1	Тема 2.2. Виды механических и электронных компонентов, применяемых в робототехнике. Тема 2.3. Работаем с блоком без подключения к компьютеру.	МОУ-СОШ №3	Опрос, беседа, Практическая работа, самостоятельная работа
12		групповая (командная) работа	1	Работаем с блоком без подключения к компьютеру. Тема 2.4. Работа с моторами, изменение скорости и добавление задержки.	МОУ-СОШ №3	Практическая работа, самостоятельная работа

			Изучение подключенных датчиков и считывание информации с них»		
13	групповая (командная) работа	1	Тема 2.4. Работа с моторами, изменение скорости и добавление задержки. Изучение подключенных датчиков и считывание информации с них»	МОУ-СОШ №3	Опрос, беседа, Практическая работа, самостоятельная работа
14	групповая (командная) работа	1	Тема 2.5. Осваиваем интерфейс программы	МОУ-СОШ №3	Опрос, беседа, Практическая работа, самостоятельная работа
15	лекционная; групповая (командная) работа	1	Тема 2.6. Изучение возможности среды программирования.	МОУ-СОШ №3	Опрос, беседа, Практическая работа, самостоятельная работа
16	групповая (командная) работа	1	Тема 2.7. Создаем программу для будущего проекта	МОУ-СОШ №3	Самостоятельная работа
17	групповая (командная) работа	1	Тема 2.8. Апробирование программы на оборудовании.	МОУ-СОШ №3	Тестирование, индивидуальные консультации
18	групповая (командная) работа	1	Апробирование программы на оборудовании.	МОУ-СОШ №3	Тестирование, индивидуальные консультации
19	групповая (командная) работа	1	Тема 2.9. Собираем конструкцию робота. Тема 2.10. Перенос программы на робота и исправление недочетов.	МОУ-СОШ №3	Самостоятельная работа Практическая работа, наблюдение, проверка работоспособност и конструкции

20		групповые консультации	1	Тема 2.11. Создаем краткую презентацию о собственном проекте. Тема 2.12. Дискуссия о проблемах, возникших во время работы.	МОУ-СОШ №3	Индивидуальные консультации, представление продукта на разных уровнях, беседа
21		защита проектов	1	Защита проекта. Рефлексия.	МОУ-СОШ №3	Представление продукта на разных уровнях, беседа
22		лекционная, групповая (командная) работа	1	Тема 3.1. Постановка проблемной ситуации и поиск путей решения. Составление плана решения задачи.	МОУ-СОШ №3	Наблюдение, индивидуальные беседы, самостоятельная работа
23		групповая (командная) работа	1	Постановка проблемной ситуации и поиск путей решения. Составление плана решения задачи.	МОУ-СОШ №3	Наблюдение, индивидуальные беседы, самостоятельная работа
24		групповая (командная) работа	1	Тема 3.2. Сборка платформы для установки моторов.	МОУ-СОШ №3	Беседа, наблюдение, практическая работа, проверка работоспособност и конструкции
25		групповая (командная) работа	1	Тема 3.2. Сборка платформы для установки моторов. Тема 3.3. Установка датчиков на имеющуюся платформу	МОУ-СОШ №3	Беседа, наблюдение, практическая работа, проверка работоспособност и конструкции, самостоятельная работа

26	групповая (командная) работа	1	Установка датчиков на имеющуюся платформу	МОУ-СОШ №3	Самостоятельная работа
27	групповая (командная) работа	1	Тема 3.4. Изготовление платформы, нахождение уязвимости	МОУ-СОШ №3	Самостоятельная работа, наблюдение, проверка работоспособност и конструкции
28	групповая (командная) работа	1	Тема 3.5. Подключение датчика цвета к блоку управления и программирование его на определение цвета Тема 3.6. Программирование блока с подключенным датчиком цвета в режиме «Яркость отраженного света».	МОУ-СОШ №3	Практическая работа, проверка работоспособност и конструкции
29	групповая (командная) работа	1	Тема 3.7. Функции для датчика цвета при различных условиях. Тема 3.8. Составление программы для робота — заварщика чая.	МОУ-СОШ №3	Наблюдение, практическая работа, демонстрацией полученных навыков, проверка работоспособност и получившейся программы
30	групповая (командная) работа	1	Тема 3.9. Работа над возможными ошибками и недочётами в готовой программе. Тема 3.10. Сборка робота — заварщика чая.	МОУ-СОШ №3	Самостоятельная работа, индивидуальные консультации
31	групповые консультации	1	Тема 3.11. Окончательная сборка робота. Испытание робота в соответствии с программой. Тема 3.12. Готовим презентацию для выступления перед группой.	МОУ-СОШ №3	Наблюдение, практическая работа, тестирование работоспособност и конструкции,

						индивидуальные беседы, консультации
32		защита проектов	1	Тема3.13. Защита проектов. Рефлексия.	МОУ-СОШ №3	Представление продукта на разных уровнях
33		защита проектов	1	Тема3.13. Защита проектов. Рефлексия.	МОУ-СОШ №3	Представление продукта на разных уровнях
34		защита проектов	1	Тема3.13. Защита проектов. Рефлексия.	МОУ-СОШ №3	Представление продукта на разных уровнях